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Wavelength-selective directional coupling with
dielectric-loaded plasmonic waveguides
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We consider wavelength-selective splitting of radiation using directional couplers (DCs) formed by dielectric-
loaded surface-plasmon-polariton waveguides (DLSPPWs). The DCs were fabricated by depositing sub-
wavelength-sized polymer ridges on a gold film using large-scale UV photolithography and characterized at
telecommunications wavelengths with near-field microscopy. We demonstrate a DLSPPW-based 45-�m-long
DC comprising 3 �m offset S bends and 25-�m-long parallel waveguides that changes from the “through”
state at 1500 nm to 3 dB splitting at 1600 nm, and show that a 50.5-�m-long DC should enable complete
separation of the radiation channels at 1400 and 1620 nm. The DC performance is found to be in good agree-
ment with full vectorial three-dimensional finite-element simulations. © 2009 Optical Society of America

OCIS codes: 240.6680, 130.3120, 130.5460.
Surface-plasmon polaritons (SPPs), light waves
coupled to free-electron oscillations in metal [1], can
be laterally confined below the diffraction limit using
subwavelength metal structures [2]. Plasmonic com-
ponents open an appealing perspective of combining
the high operational bandwidth of photonic compo-
nents with the subwavelength dimensions of SPP
waveguides [1,2]. Recently developed dielectric-
loaded SPP waveguides (DLSPPWs), utilizing high
effective indexes of SPP modes guided by dielectric
ridges on smooth metal films [3–7], represent an at-
tractive alternative to other plasmonic technologies
by virtue of being naturally compatible with different
dielectrics and large-scale industrial fabrication us-
ing UV lithography [8–10]. Preliminary investiga-
tions indicated that DLSPPW-based components fea-
ture relatively low bend and propagation losses
[9,10], but their potential for wavelength selection, a
crucial functionality for any photonic circuit, has so
far not been explored.

Wavelength-selective plasmonic components gener-
ally feature more complicated geometry [2], thereby
imposing additional requirements to the accuracy of
fabrication. In our case, one should also bear in mind
a (diffraction) limited resolution of UV lithography
[9] employed for the DLSPPW fabrication. Taking
into account a rather good performance of recently
investigated DLSPPW-based S bends [9], we suggest
making use of wavelength-dependent behavior of di-
rectional couplers (DCs) [11] for the selection and
spatial separation of radiation channels at different
wavelengths. Note that the wavelength dispersion of
directional coupling using DLSPPWs has not been
considered in previous publications [6,7]. Here we re-

port on the fabrication, characterization, and model-
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ing of DLSPPW-based wavelength-selective DCs op-
erating at telecommunication wavelengths.

All waveguide structures were fabricated using
deep UV lithography (wavelength of �250 nm) with
a Süss Microtech MJB4 mask aligner in the vacuum
contact mode and a �550 nm thick layer of poly-
methyl-methacrylate (PMMA) resist spin coated on a
60 nm thin gold film, which was supported by a thin
glass substrate. Typically, the width of the produced
waveguides, inspected with scanning electron micros-
copy (SEM), was close to 500 nm ensuring the single-
mode (and close to optimum) DLSPPW operation [5].
The performance of the fabricated components was
characterized using a scanning near-field optical mi-
croscope (SNOM), operating in collection mode with
an uncoated fiber tip used as a probe, and an ar-
rangement for SPP excitation (at �=1500–1620 nm)
in the Kretschmann–Raether configuration, as de-
scribed in detail elsewhere [10]. All waveguide struc-
tures were connected to funnel structures [Fig. 1(a)],
facilitating efficient excitation of the DLSPPW mode
[8], with the further improvement in that the
DLSPPW mode was excited directly inside the taper
by matching the excitation angle (under total inter-
nal reflection), resulting in SNOM images of high
quality [9,10]. We found that all structures exhibited
the DLSPPW propagation length of �50 �m, slightly
increasing with the wavelength [10].

Several DLSPPW-based 45-�m-long DCs, compris-
ing 3 �m offset, 10-�m-long (input and output) S
bends, having different center-to-center separations,
S=800, 900, and 1000 nm, between 25-�m-long par-
allel waveguides were fabricated and characterized

with the SNOM at different wavelengths (Fig. 1). It
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was observed that the coupling length lc (i.e., the in-
teraction length needed to completely transfer the
power from one waveguide to another) depends
strongly on the separation [Figs. 1(c) and 1(e)] and
varies noticeably with the wavelength, influencing
the power level in the output waveguides [Figs. 1(c)
and 1(d)]. At the same time, the total DC transmis-
sion evaluated using the input and output waveguide
cross sections (separated by L=45 �m) is practically
wavelength independent maintaining the level of
�0.23, a value that is consistent with the loss in-
curred by 25-�m-long propagation ��40% � and two S
bends (�35% per bend) [9]. One can thereby conclude
that the performance of the fabricated DCs is not de-
graded owing to fabrication errors, an important cir-
cumstance that is achieved because the DC design
does not contain critical elements requiring high-
resolution lithography.

To get further insight into the DLSPPW-based DC
operation, we conducted full three-dimensional
finite-element method (3D-FEM) simulations of the
DC operation [6] that allowed us to retrieve the cou-
pling length dispersion. It is seen that the simulation
results agree well with the experimental values ob-
tained directly from the SNOM images (Fig. 2). This
dispersion was used to calculate the normalized out-
put signals, i.e., straight Ts and cross Tc transmis-
sions, with only one waveguide being excited at the
input,

Ts,c��� = �Tbend�2 exp�−
Lp

LSP
��cos2

sin2� �Li

2lc����� , �1�

where the first factor reflects the S-bend transmis-

Fig. 1. (Color online) (a) Scanning electron microscope im-
age of the fabricated DC showing the funnel structure fa-
cilitating the DLSPPW excitation. (b) Topographical and
(c)–(e) near-field optical [�= �c� 1500, (d) 1620, and (e)
1500 nm] SNOM images of 45 �m long DCs with the sepa-
rations (b)–(d) S=1000 nm along with an inset showing
SEM image of the coupling region and (e) S=900 nm.
sion, the second one reflects the power loss incurred
by the propagation through the section of parallel
waveguides (of length Lp), and Li denotes the effec-
tive interaction length; typically, Li�Lp due to the
additional mode coupling in the S bends [11]. Using
the already known parameters, Tbend�0.65 (evalu-
ated using the available experimental data [9]), Lp
=25 �m and lc��� for S=1000 nm (Fig. 2), we found
that the interaction length Li�34 �m results in good
agreement (Fig. 3) between the calculated [Eq. (1)]
output signals and the values obtained from SNOM
images, similar to those shown in Fig. 1. Using the
obtained results one can design a DC structure that
would ensure spatial separation of radiation corre-
sponding to different bands used in optical telecom-
munications. For example, an increase of the length
of parallel section by �5.5 �m for the DC with
S=1000 nm would enable spatial separation of the
wavelengths of 1400 and 1620 nm (belonging to E
and L bands) as seen from the calculations using Eq.
(1) with Lp=30.5 �m and Li�39.5 �m (Fig. 3).

In conclusion, we have considered the usage of DC
wavelength dispersion for the selection and spatial

Fig. 2. (Color online) DC coupling length evaluated for dif-
ferent wavelengths and separations directly from SNOM
images similar to those shown in Figs. 1(c)–1(e) and calcu-
lated with 3D-FEM simulations.

Fig. 3. (Color online) DC output signals normalized with
respect to the input when exciting only one waveguide, de-
termined experimentally from SNOM images similar to
those shown in Figs. 1(c)–1(e) and calculated using Eq. (1)
and the DC coupling length dispersion shown in

Fig. 2.
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separation of radiation channels at different wave-
lengths. Using industrially compatible large-scale
UV-lithography-based fabrication and exploiting the
principles of DLSPPW-based plasmonic technology,
we have fabricated and characterized wavelength-
selective DCs operating at telecommunications wave-
lengths. We have demonstrated a DLSPPW-based
45-�m-long DC comprising 3 �m offset S bends and
25-�m-long parallel waveguides that changes from
the through state at 1500 nm to 3 dB splitting at
1600 nm and have shown that a 50.5-�m-long DC
should enable complete separation of the radiation
channels at 1400 and 1620 nm (belonging to E and L
bands). The performance of the considered structures
could be further improved by fine tuning the DC pa-
rameters so as to achieve overall optimization (e.g.,
with the 3D-FEM simulations) with respect to the
wavelength selection and insertion loss. Taking into
account the fact that this technology is naturally
compatible with different dielectrics, one can envis-
age the development of ultracompact plasmonic com-
ponents utilizing thermo-optical, electro-optical,
magneto-optical, acousto-optical, and nonlinear opti-
cal effects as well as being integrated with electrical
circuits.
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